The definition of effective stress is mandatory when using CSOL2, MWAT2, CSOL3, MWAT3, FAIL2, FAIL3, FAIF2, FAIF3, FAIN2, FAIN3, SGRC2, SGRT2.
Remark:
For other elements than CSOL2 or MWAT2, the parameter ISOL can only be equal to 0 or 1.
For PLXLS : ISOL < 0 ⇒ for non saturated soil (suction effect and considered in the mechanic law) (for the Alonso's law).
The total stress σ is split into an effective stress σ' in the matrix and a pressure p_f in the fluid.
ISOL = 1 - All coupled elements |
---|
This case corresponds to Terzaghi's postulate.
\[ \sigma = \begin{cases} \sigma'- b p_w & \quad \text{if } p_w \geq 0 \\ \sigma' & \quad \text{if } p_w < 0 \end{cases} \]
b is the Biot's coefficient
ISOL = 4 - CSOL2 element |
---|
$\sigma = \sigma' - b p_w $, whatever the sign of $p_w$, for the problems where the negative pressure represents effectively the suction.
ISOL = 5 - CSOL2 element |
---|
$\sigma = \sigma' - b S_r p_w, \forall p_w$
with $S_r$ = the water saturation degree, ranging between 0 and 1.
ISOL = 6 - CSOL2 and MWAT2 |
---|
$\sigma = \sigma^* -p_a$ (Alonso's net stress)
with $p_a$ is equal to 0 in CSOL2 and equal to air pressure in MWAT2
ISOL = 7 - only for element MWAT2: Bishop's model |
---|
\[ \sigma = \sigma' - b \left((1-S_w)p_a+ S_w p_w\right) \\ = \sigma' - b(S_a p_a + S_w p_w)\] with:
ISOL = 8 - CSOL2 element |
---|
\[\sigma = \sigma' - b\pi , \forall p\] where:
ISOL = 9 : Only for CSOL2 element and ORTHOPLA mechanical law |
---|
$\sigma_{ij} = \sigma'_{ij} - b_{ij} S_r p_w , \forall p_w$
with $b_{ij}$ the anisotropic Biot’s coefficient. In the orthotropic axes: \[b_{ij}=\delta_{ij}-\frac{C^e_{ijkk}}{3K_s}\]
In case of orthotropic axes rotation, it is transposed in the global axes as follows: \[b_{ij}=R_{ik}R_{jl}b'_{kl}\]
where $R_{ij}$ is the rotation matrix. More details about this anisotropy are available in the definition of element CSOL2 and orthotropic law ORTHOPLA.