====== Appendix 7: Notion of effective stress and signification of parameter ISOL in elements CSOL2 and MWAT2 ====== The definition of effective stress is mandatory when using CSOL2, MWAT2, CSOL3, MWAT3, FAIL2, FAIL3, FAIF2, FAIF3, FAIN2, FAIN3, SGRC2, SGRT2. __Remark:__ \\ For other elements than CSOL2 or MWAT2, the parameter ISOL can only be equal to 0 or 1. \\ For PLXLS : ISOL < 0 => for non saturated soil (suction effect and considered in the mechanic law) (for the Alonso's law). The total stress σ is split into an effective stress σ' in the matrix and a pressure p_f in the fluid. ^ISOL = 1 - All coupled elements^^ This case corresponds to Terzaghi's postulate. \[ \sigma = \begin{cases} \sigma'- b p_w & \quad \text{if } p_w \geq 0 \\ \sigma' & \quad \text{if } p_w < 0 \end{cases} \] b is the Biot's coefficient ^ISOL = 4 - CSOL2 element^^ $\sigma = \sigma' - b p_w $, whatever the sign of $p_w$, for the problems where the negative pressure represents effectively the suction. ^ISOL = 5 - CSOL2 element^^ $\sigma = \sigma' - b S_r p_w, \forall p_w$ \\ with $S_r$ = the water saturation degree, ranging between 0 and 1. ^ISOL = 6 - CSOL2 and MWAT2^^ $\sigma = \sigma^* -p_a$ (Alonso's net stress) \\ with $p_a$ is equal to 0 in CSOL2 and equal to air pressure in MWAT2 ^ISOL = 7 - only for element MWAT2: Bishop's model^^ \[ \sigma = \sigma' - b \left((1-S_w)p_a+ S_w p_w\right) \\ = \sigma' - b(S_a p_a + S_w p_w)\] with: * $S_a$ air saturation * $S_w$ water saturation * $p_a$ air pressure * $p_w$ water pressure ^ISOL = 8 - CSOL2 element^^ \[\sigma = \sigma' - b\pi , \forall p\] where: * $b$ is the Biot coefficient * $\pi$ is the generalized pore pressure (Coussy-Danglat) ^ISOL = 9 : Only for CSOL2 element and ORTHOPLA mechanical law^^ $\sigma_{ij} = \sigma'_{ij} - b_{ij} S_r p_w , \forall p_w$ \\ with $b_{ij}$ the anisotropic Biot’s coefficient. In the orthotropic axes: \[b_{ij}=\delta_{ij}-\frac{C^e_{ijkk}}{3K_s}\] In case of orthotropic axes rotation, it is transposed in the global axes as follows: \[b_{ij}=R_{ik}R_{jl}b'_{kl}\] where $R_{ij}$ is the rotation matrix. More details about this anisotropy are available in the definition of element CSOL2 and orthotropic law ORTHOPLA. \\ \\