User Tools

Site Tools


appendices:a7

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
appendices:a7 [2024/06/20 16:22]
frederic
appendices:a7 [2024/06/20 16:25] (current)
frederic
Line 57: Line 57:
 ^ISOL = 9 : Only for CSOL2 element and ORTHOPLA mechanical law^^ ^ISOL = 9 : Only for CSOL2 element and ORTHOPLA mechanical law^^
  
-$\sigma_{ij} = \sigma'​_{ij} - b_{ij}\theta(S_r)p , \forall ​pwith ISEM = 1 or 2 \\+$\sigma_{ij} = \sigma'​_{ij} - b_{ij} S_r p_w , \forall ​p_w \\
 with $b_{ij}$ the anisotropic Biot’s coefficient. In the orthotropic axes: \[b_{ij}=\delta_{ij}-\frac{C^e_{ijkk}}{3K_s}\] with $b_{ij}$ the anisotropic Biot’s coefficient. In the orthotropic axes: \[b_{ij}=\delta_{ij}-\frac{C^e_{ijkk}}{3K_s}\]
 In case of orthotropic axes rotation, it is transposed in the global axes as follows: \[b_{ij}=R_{ik}R_{jl}b'​_{kl}\] In case of orthotropic axes rotation, it is transposed in the global axes as follows: \[b_{ij}=R_{ik}R_{jl}b'​_{kl}\]
 where $R_{ij}$ is the rotation matrix. More details about this anisotropy are available in the definition of element CSOL2 and orthotropic law ORTHOPLA. \\ \\ where $R_{ij}$ is the rotation matrix. More details about this anisotropy are available in the definition of element CSOL2 and orthotropic law ORTHOPLA. \\ \\
-$\theta(S_r)$ is the Bishop'​s coefficient,​ depending on the material saturation, and included between 0 and 1: 
-\[ \theta(S_r) =  \begin{cases} ​  S_r = 1  & \quad \text{if } p \geq 0 \\ 
-    S_r = \frac{n}{n_0}=\frac{S}{S_0} ​ & \quad \text{if } p < 0 
-  \end{cases} 
-\] 
-with: 
-  * $p$ the pore pressure in CSOL2 
-  * $n$ the soil porosity 
-  * $S$ the accumulated fluid volume 
-  * $S_0$: $S$ in $p = 0$ 
  
appendices/a7.1718893321.txt.gz · Last modified: 2024/06/20 16:22 by frederic