This shows you the differences between two versions of the page.
Both sides previous revision Previous revision Next revision | Previous revision | ||
appendices:a7 [2024/06/17 16:00] frederic |
appendices:a7 [2024/06/20 16:25] (current) frederic |
||
---|---|---|---|
Line 1: | Line 1: | ||
====== Appendix 7: Notion of effective stress and signification of parameter ISOL in elements CSOL2 and MWAT2 ====== | ====== Appendix 7: Notion of effective stress and signification of parameter ISOL in elements CSOL2 and MWAT2 ====== | ||
- | Two coupling methods are possible with the elements CSOL2 and MWAT2: | + | The definition of effective stress is mandatory when using CSOL2, MWAT2, CSOL3, MWAT3, FAIL2, FAIL3, FAIF2, FAIF3, FAIN2, FAIN3, SGRC2, SGRT2. |
- | * Fully coupled method: ISEMI = 2 | + | |
- | * Semi-coupled method: ISEMI = 1 | + | |
- | The total stress σ is split in an effective stress σ' in the matrix and a pressure p in the fluid, according to Terzaghi's law. | + | |
- | ^ISOL = 1 (ISEMI = 1 or 2)^^ | + | __Remark:__ \\ |
+ | For other elements than CSOL2 or MWAT2, the parameter ISOL can only be equal to 0 or 1. \\ | ||
+ | For PLXLS : ISOL < 0 => for non saturated soil (suction effect and considered in the mechanic law) (for the Alonso's law). | ||
+ | |||
+ | |||
+ | The total stress σ is split into an effective stress σ' in the matrix and a pressure p_f in the fluid. | ||
+ | |||
+ | ^ISOL = 1 - All coupled elements^^ | ||
- | \[ \sigma = \begin{cases} \sigma'-b & \quad \text{if } p \geq 0 \\ | + | This case corresponds to Terzaghi's postulate. |
- | \sigma' & \quad \text{if } p < 0 | + | |
+ | |||
+ | \[ \sigma = \begin{cases} \sigma'- b p_w & \quad \text{if } p_w \geq 0 \\ | ||
+ | \sigma' & \quad \text{if } p_w < 0 | ||
\end{cases} | \end{cases} | ||
\] | \] | ||
- | ===== ISOL = 2 (ISEMI = 1) - NOT USED ===== | + | b is the Biot's coefficient |
- | \[ \sigma = \sigma' = b (p_A+\Delta p) \\ =b (p_A+\chi_w \varepsilon_v)\\ =b (p_A+\chi_w \dot{\varepsilon}_v\Delta t)\] | + | |
- | with: | + | |
- | * $p_A$, the pressure at the beginning of the step; | + | |
- | * $\varepsilon_v$, the pores volume variation; | + | |
- | * $\chi_w$, the bulk modulus of water; | + | |
- | * $\Delta t$, the time step. | + | |
- | In the semi-coupled method (ISEMI=1), one replaces favorably in the Terzaghi's principle, the pressure (ISOL=1) by the effect of water on mechanics (ISOL=2). | + | |
- | ===== ISOL = 3 - NOT USED ===== | + | ^ISOL = 4 - CSOL2 element^^ |
- | This case is reserved for the semi-coupled analysis (ISEMI=1) with the law CLOE: \[\sigma=\sigma'-bQ_B(20)\] | + | |
- | with $Q_B(20) = Q_A(20) - \chi_w \dot{\varepsilon}_v\Delta t$, state variable containing the pore pressure in the case of non drained analysis | + | |
- | ^ISOL = 4^^ | + | $\sigma = \sigma' - b p_w $, whatever the sign of $p_w$, for the problems where the negative pressure represents effectively the suction. |
- | $\sigma = \sigma' - bp , \forall p$ with ISEMI=1 or 2 for the problems where the negative pressure represents effectively the suction. | + | ^ISOL = 5 - CSOL2 element^^ |
- | ^ISOL = 5^^ | + | $\sigma = \sigma' - b S_r p_w, \forall p_w$ \\ |
- | $\sigma = \sigma' - b\theta(S_r) , \forall p$ with ISEMI = 1 or 2 \\ | + | with $S_r$ = the water saturation degree, ranging between 0 and 1. |
- | with $\theta(S_r)$ = Bishop's coefficient, depending on the material saturation, and included between 0 and 1: | + | |
- | \[ \theta(S_r) = \begin{cases} S_r = 1 & \quad \text{if } p \geq 0 \\ | + | |
- | S_r = \frac{n}{n_0}=\frac{S}{S_0} & \quad \text{if } p < 0 | + | |
- | \end{cases} | + | |
- | \] | + | |
- | with: | + | |
- | * $p$ the pore pressure in CSOL2 and water pressure in MWAT2 | + | |
- | * $n$ the soil porosity | + | |
- | * $S$ the accumulated fluid volume | + | |
- | * $S_0$: $S$ in $p = 0$ | + | |
- | ^ISOL = 6^^ | + | |
+ | ^ISOL = 6 - CSOL2 and MWAT2^^ | ||
$\sigma = \sigma^* -p_a$ (Alonso's net stress) \\ | $\sigma = \sigma^* -p_a$ (Alonso's net stress) \\ | ||
+ | |||
with $p_a$ is equal to 0 in CSOL2 and equal to air pressure in MWAT2 | with $p_a$ is equal to 0 in CSOL2 and equal to air pressure in MWAT2 | ||
^ISOL = 7 - only for element MWAT2: Bishop's model^^ | ^ISOL = 7 - only for element MWAT2: Bishop's model^^ | ||
- | \[ \sigma = \sigma' - b\left((1-S_w)p_a+S_w p_w\right) \\ = \sigma' - b(S_a p_a + S_w p_w)\] | + | \[ \sigma = \sigma' - b \left((1-S_w)p_a+ S_w p_w\right) \\ = \sigma' - b(S_a p_a + S_w p_w)\] |
with: | with: | ||
* $S_a$ air saturation | * $S_a$ air saturation | ||
Line 64: | Line 54: | ||
* $b$ is the Biot coefficient | * $b$ is the Biot coefficient | ||
* $\pi$ is the generalized pore pressure (Coussy-Danglat) | * $\pi$ is the generalized pore pressure (Coussy-Danglat) | ||
- | __Remark:__ \\ | ||
- | For other elements than CSOL2 or MWAT2, the parameter ISOL can only be equal to 0 or 1. \\ | ||
- | For PLXLS : ISOL < 0 => for non saturated soil (suction effect and considered in the mechanic law) (for the Alonso's law). | ||
^ISOL = 9 : Only for CSOL2 element and ORTHOPLA mechanical law^^ | ^ISOL = 9 : Only for CSOL2 element and ORTHOPLA mechanical law^^ | ||
- | $\sigma_{ij} = \sigma'_{ij} - b_{ij}\theta(S_r)p , \forall p$ with ISEM = 1 or 2 \\ | + | $\sigma_{ij} = \sigma'_{ij} - b_{ij} S_r p_w , \forall p_w$ \\ |
with $b_{ij}$ the anisotropic Biot’s coefficient. In the orthotropic axes: \[b_{ij}=\delta_{ij}-\frac{C^e_{ijkk}}{3K_s}\] | with $b_{ij}$ the anisotropic Biot’s coefficient. In the orthotropic axes: \[b_{ij}=\delta_{ij}-\frac{C^e_{ijkk}}{3K_s}\] | ||
In case of orthotropic axes rotation, it is transposed in the global axes as follows: \[b_{ij}=R_{ik}R_{jl}b'_{kl}\] | In case of orthotropic axes rotation, it is transposed in the global axes as follows: \[b_{ij}=R_{ik}R_{jl}b'_{kl}\] | ||
where $R_{ij}$ is the rotation matrix. More details about this anisotropy are available in the definition of element CSOL2 and orthotropic law ORTHOPLA. \\ \\ | where $R_{ij}$ is the rotation matrix. More details about this anisotropy are available in the definition of element CSOL2 and orthotropic law ORTHOPLA. \\ \\ | ||
- | $\theta(S_r)$ is the Bishop's coefficient, depending on the material saturation, and included between 0 and 1: | ||
- | \[ \theta(S_r) = \begin{cases} S_r = 1 & \quad \text{if } p \geq 0 \\ | ||
- | S_r = \frac{n}{n_0}=\frac{S}{S_0} & \quad \text{if } p < 0 | ||
- | \end{cases} | ||
- | \] | ||
- | with: | ||
- | * $p$ the pore pressure in CSOL2 | ||
- | * $n$ the soil porosity | ||
- | * $S$ the accumulated fluid volume | ||
- | * $S_0$: $S$ in $p = 0$ | ||