====== Specific IDENT for cycle jump ====== The value of IDENT allos automatic computation of $N_j$ using a user-defined criterion. \\ The structure to define the parameters for a specific IDENT is the following: |First line|NPAR = number of parameters for this IDENT| |Second line|PARAM(1:NPAR) = parameters for this IDENT| ===== IDENT = 271X ===== [[laws:chab|Chaboche]] law. \\ The value of $N_j$ is defined to keep the increment of total damage below $(\Delta D)_{max}$. ===Line 1 === |NPAR| 4| === Line 2 === |PARAM(1)|$N_{AF}$| |PARAM(2)|$N_{AF,Y}$| |PARAM(3)|$(\Delta D)_{max}$| |PARAM(4)|$(N_{jump})_{max}$| ===== IDENT = 272X ===== [[laws:chab|Chaboche]] law. \\ The value of $N_j$ is defined to keep the increment of total damage below $(\Delta p)_{max}$. ===Line 1 === |NPAR| 2| === Line 2 === |PARAM(1)|$(\Delta p)_{max}$| |PARAM(2)|$(N_{jump})_{max}$| ===== IDENT = 273X ===== [[laws:chab|Chaboche]] law. \\ The value of $N_j$ is defined to keep the increment of equivalent plastic strain below $(\Delta p)_{max}$ and the increment of total damage below $(\Delta D)_{max}$. ===Line 1 === |NPAR| 5| === Line 2 === |PARAM(1)|$N_{AF}$| |PARAM(2)|$N_{AF,Y}$| |PARAM(3)|$(\Delta D)_{max}$| |PARAM(4)|$(\Delta p)_{max}$| |PARAM(5)|$(N_{jump})_{max}$|