This shows you the differences between two versions of the page.
Next revision | Previous revision | ||
appendices:a15 [2019/06/21 16:47] helene created |
appendices:a15 [2020/08/25 15:46] (current) |
||
---|---|---|---|
Line 41: | Line 41: | ||
For 3D analysis (NTANA = ±2) with NTNOR=0 and COMPA(1)=0: | For 3D analysis (NTANA = ±2) with NTNOR=0 and COMPA(1)=0: | ||
\[CONVE=\sqrt{\frac{UNOR(1)}{DNOR(1)}}\] | \[CONVE=\sqrt{\frac{UNOR(1)}{DNOR(1)}}\] | ||
- | For 3D shell analysis (NTANA = ±8) with NTNOR=0, COMPA(1)=0: | + | For 3D shell analysis (NTANA = ±8) with NTNOR=0, COMPA(1)<0 and COMPA(3)>0: |
+ | \[\sqrt{\frac{1}{2} \left(\frac{UNOR(1)}{\max(DNOR(1),COMPA(1)²)} +\frac{UNOR(3)}{COMPA(3)²}\right)} \] | ||
+ | |||
+ | ==== Step 4: Check the convergence of the step ==== | ||
+ | The step is converged for the displacements if $CONVE \leq PRECD$ \\ | ||
+ | For example, for 3D analysis (NTANA = ±2) with NTNOR=0 and COMPA(1)=-10<sup>-1</sup> and PRECD=10<sup>-2</sup>, the step is converged if: | ||
+ | \[\sqrt{\frac{UNOR(1)}{\max(DNOR(1),COMPA(1)²)}} \leq PRECD \\ <=> \sqrt{\frac{UNOR(1)}{\max(DNOR(1),10^{-2})}} \leq 10^{-2} \\ <=> UNOR(1) \leq 10^{-4}*\max(DNOR(1),10^{-2})\] | ||
+ | |||
+ | If $DNOR(1)=10^{-8}$, the step is converged if $UNOR(1) \leq 10^{-4}*10^{-2}=10^{-6}$ \\ | ||
+ | If $DNOR(1)=10^{-1}$, the step is converged if $UNOR(1) \leq 10^{-4}*DNOR(1)=10^{-5}$ \\ | ||
+ | |||
+ | |||
===== Convergence for the forces (NORME2.F) ===== | ===== Convergence for the forces (NORME2.F) ===== | ||
+ | A step is converged for the displacements if $CONVE=\frac{FNOR}{RNOR} \leq PRECF$ | ||
+ | |||
+ | with: | ||
+ | * $FNOR$ = out-of-balance forces ($F_{ex}-F_{in}$) | ||
+ | * $RNOR$ = reaction forces (force on the fixed DOF) | ||
+ | The definition of the norm $CONVE$ may vary, depending on the type of norm $NTNOR$ and the absolute values for convergence COMPA(1...3) = STRAT (15...17) chosen in the execution file, as will be shown below. The algorithm for computing the norm can be decomposed in several steps. | ||
+ | |||
+ | ==== Step 1: Compute FNORMi and RNORMi for every DOF ==== | ||
+ | For every degree of freedom (DOF), two quantities can be computed: $FNORM_i$ and $RNORM_i$ as shown in the table below. | ||
+ | ^ NTNOR ^ $FNORM_i$ ^ $RNORM_i$ ^ | ||
+ | | 0 |$\displaystyle\sum_{\text{dof along i}} [\text{out-of-balance forces}]²$|$\displaystyle\sum_{\text{dof along i}} [\text{reactions}]²$| | ||
+ | | 1 |$\displaystyle\sum_{\text{dof along i}} abs(\text{out-of-balance forces})$|$\displaystyle\sum_{\text{dof along i}} abs(\text{reactions})$| | ||
+ | | 2 |$\displaystyle\max_{\text{dof along i}} abs(\text{out-of-balance forces})$|$\displaystyle\max_{\text{dof along i}} abs(\text{reactions})$| | ||
+ | In addition, two quantities are also computed: $NFOR_i$ and $NREA_i$ which contains respectively the number of out-of-balance forces (positive equation number in ID matrix) and reactions (negative equation number in ID matrix) in every direction. | ||
+ | |||
+ | ==== Step 2: Regroup $FNORM_i$ and $RNORM_i$ by dimension (i.e. force, heat flux and momentum) depending on the type of analysis ==== | ||
+ | For example, for 3D analysis (NTANA = ±2), we only have one type of dimension (force): | ||
+ | \[\left \{\begin{array}{r c l} FNOR(1) & = & \displaystyle\sum_{i=1}^3 FNORM_i \\ RNOR(1) & = & \displaystyle\sum_{i=1}^3 RNORM_i \\ \end{array} \right . \text{and} \left \{\begin{array}{r c l} NFO(1) & = & \displaystyle\sum_{i=1}^3 NFOR_i \\ NRE(1) & = & \displaystyle\sum_{i=1}^3 NREA_i \\ \end{array} \right .\] | ||
+ | |||
+ | For 3D shell analysis (NTANA = ±8), we have two types (translation and rotation): | ||
+ | \[\left \{\begin{array}{r c l} FNOR(1) & = & \displaystyle\sum_{i=1}^3 FNORM_i \\ RNOR(1) & = & \displaystyle\sum_{i=1}^3 RNORM_i \\ \end{array} \right . \text{ and } \left \{\begin{array}{r c l} FNOR(3) & = & \displaystyle\sum_{i=4}^6 FNORM_i \\ RNOR(3) & = & \displaystyle\sum_{i=4}^6 RNORM_i \\ \end{array} \right .\] | ||
+ | \[\left \{\begin{array}{r c l} NFO(1) & = & \displaystyle\sum_{i=1}^3 NFOR_i \\ NRE(1) & = & \displaystyle\sum_{i=1}^3 NREA_i \\ \end{array} \right . \text{ and } \left \{\begin{array}{r c l} NFO(3) & = & \displaystyle\sum_{i=4}^6 NFOR_i \\ NRE(3) & = & \displaystyle\sum_{i=4}^6 NREA_i \\ \end{array} \right .\] | ||
+ | |||
+ | For 3D thermo-mechanical analysis (NTANA=6), we also have two types (translation and temperature): | ||
+ | \[\left \{\begin{array}{r c l} FNOR(1) & = & \displaystyle\sum_{i=1}^3 FNORM_i \\ RNOR(1) & = & \displaystyle\sum_{i=1}^3 RNORM_i \\ \end{array} \right . \text{ and } \left \{\begin{array}{r c l} FNOR(2) & = & FNORM_4 \\ RNOR(2) & = & RNORM_4 \\ \end{array} \right .\] | ||
+ | \[\left \{\begin{array}{r c l} NFO(1) & = & \displaystyle\sum_{i=1}^3 NFOR_i \\ NRE(1) & = & \displaystyle\sum_{i=1}^3 NREA_i \\ \end{array} \right . \text{ and } \left \{\begin{array}{r c l} NFO(2) & = & NFOR_4 \\ NRE(2) & = & NREA_4 \\ \end{array} \right .\] | ||
+ | |||
+ | ==== Step 3: Compute the norm of convergence CONVE ==== | ||
+ | Depending on the type of norm NTNOR and the absolute values for convergence COMPA(1...3) = STRAT (15...17), the computation of the norm CONVE vary. The norm is | ||
+ | * relative if COMPA = 0 | ||
+ | * absolute if COMPA > 0 | ||
+ | * either absolute or relative if COMPA < 0 | ||
+ | The computation is performed as shown in the table below: | ||
+ | ^ NTNOR ^ COMPA(i) ≤ 0 ^ COMPA(i) > 0 ^ | ||
+ | | 0 |\[\sqrt{\frac{1}{NDIM} \displaystyle\sum_{i=1}^{NDIM} \frac{\frac{FNOR(i)}{NFO(i)}}{\max\left(\frac{RNOR(i)}{NRE(i)},\frac{COMPA(i)²}{NRE(i)}\right)}} \]|\[\sqrt{\frac{1}{NDIM} \displaystyle\sum_{i=1}^{NDIM} \frac{\frac{FNOR(i)}{NFO(i)}}{COMPA(i)²}} \]| | ||
+ | | 1 or 2 |\[\sqrt{\frac{1}{NDIM} \displaystyle\sum_{i=1}^{NDIM} \frac{\frac{FNOR(i)}{NFO(i)}}{\max\left(\frac{RNOR(i)}{NRE(i)},\frac{-COMPA(i)}{NRE(i)}\right)}} \]|\[\sqrt{\frac{1}{NDIM} \displaystyle\sum_{i=1}^{NDIM} \frac{\frac{FNOR(i)}{NFO(i)}}{COMPA(i)}} \]| | ||
+ | |||
+ | Remark: the norm can be absolute for some dimensions and relative for others, in which case the formula needs to be adapted. This will be clearer with some examples… \\ | ||
+ | \\ | ||
+ | For 3D analysis (NTANA = ±2) with NTNOR=0 and COMPA(1)=0: | ||
+ | \[CONVE=\sqrt{\frac{\frac{FNOR(i)}{NFO(i)}}{\frac{RNOR(i)}{NRE(i)}}}\] | ||
+ | For 3D shell analysis (NTANA = ±8) with NTNOR=0, COMPA(1)<0 and COMPA(3)>0: | ||
+ | \[ CONVE=\sqrt{\frac{1}{2} \left( \frac{\frac{FNOR(1)}{NFO(1)}}{\max\left(\frac{RNOR(1)}{NRE(1)},\frac{COMPA(1)²}{NRE(1)}\right)} +\frac{\frac{FNOR(3)}{NFO(3)}}{COMPA(3)²}\right)} \] | ||
+ | |||
+ | ==== Step 4: Check the convergence of the step ==== | ||
+ | The step is converged for the displacements if $CONVE \leq PRECF$ \\ | ||
+ | For example, for 3D analysis (NTANA = ±2) with NTNOR=0 and COMPA(1)=-10<sup>-1</sup> and PRECF=10<sup>-2</sup>, the step is converged if: | ||
+ | \[\sqrt{\frac{\frac{FNOR(1)}{NFO(1)}}{\frac{\max(RNOR(1),COMPA(1)²)}{NRE(1)}}} \leq PRECF \\ <=> \sqrt{\frac{\frac{FNOR(1)}{NFO(1)}}{\frac{\max(RNOR(1),10^{-2})}{NRE(1)}}} \leq 10^{-2} \\ <=> \frac{FNOR(1)}{NFO(1)} \leq 10^{-4}*\frac{\max(RNOR(1),10^{-2})}{NRE(1)}\] | ||
+ | |||
+ | If $RNOR(1)=10^{-8}$, the step is converged if $\frac{FNOR(1)}{NFO(1)} \leq 10^{-4}*\frac{10^{-2}}{NRE(1)}=\frac{10^{-6}}{NRE(1)}$ \\ | ||
+ | If $RNOR(1)=10^{-1}$, the step is converged if $\frac{FNOR(1)}{NFO(1)} \leq 10^{-4}*\frac{RNOR(1)}{NRE(1)}=\frac{10^{-5}}{NRE(1)}$ \\ | ||