User Tools

Site Tools


appendices:a12

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
appendices:a12 [2019/11/14 16:50]
helene
appendices:a12 [2020/08/25 15:46] (current)
Line 3: Line 3:
 File number = 35 ; Generally called *IN.MET\\ ​ File number = 35 ; Generally called *IN.MET\\ ​
 This *.met file is read in the Prepro by METLAW.F\\ \\ This *.met file is read in the Prepro by METLAW.F\\ \\
-This file contains all the data necessary to use effectively the laws [[laws:​meta|META]] and  [[laws:​thmet|THMET]]. It must always exist to perform a metallurgical thermal analysis. Sections ​[[appendices:​a12#​1. Title|1. Title]] ​to [[appendices:​a12#​5. Description of TTT diagram |5. Description of TTT diagram]] ​are repeated with increasing ILAWN if more than one steel is described.+This file contains all the data necessary to use effectively the laws [[laws:​meta|META]], [[laws:​metamec|METAMEC]],​ [[laws:​elamet|ELAMET]],​ [[laws:​arbthmet|ARBTHMET]] and [[laws:​thmet|THMET]]. It must always exist to perform a metallurgical thermal analysis. Sections 1 to are repeated with increasing ILAWN if more than one steel is described.
  
 ==== 1. Title ==== ==== 1. Title ====
Line 13: Line 13:
 |ILAWN|Number of the steel described. This number is entered under the reference number IMETA by the law [[laws:​meta|META]]| |ILAWN|Number of the steel described. This number is entered under the reference number IMETA by the law [[laws:​meta|META]]|
 |IMPER|= 0 No impression\\ = 1 Impression on file number 36 generally called *IN.OUM| |IMPER|= 0 No impression\\ = 1 Impression on file number 36 generally called *IN.OUM|
-|NTPCA|= 8; Number of parameters in section [[appendices:​a12#​ Characteristic temperatures (TTT + equilibrium F-C diagrams) |Characteristic temperature]]| +|NTPCA|Number of parameters in section [[appendices:​a12#​ Characteristic temperatures (TTT + equilibrium F-C diagrams) |3.]] \\ = 8 for [[laws:​meta|META]];​ \\ = 20 for [[laws:​metamec|METAMEC]]| 
-|NPA|= 5; Number of parameters described by polynomials (section [[appendices:​a12#​ Parameters described by polynomials of temperature | Parameters described by polynomials of temperature]])|+|NPA|= 5; Number of parameters described by polynomials (section [[appendices:​a12#​2. Parameters described by polynomials of temperature |4.]])|
 |NDPO|Maximum degree of polynomials (maximum value = 7)| |NDPO|Maximum degree of polynomials (maximum value = 7)|
 |NVM|= 0 No mechanical parameters described| |NVM|= 0 No mechanical parameters described|
Line 25: Line 25:
 |IET|= 1: Definition of the tangent modulus according to the strain level for each phase and temperature| |IET|= 1: Definition of the tangent modulus according to the strain level for each phase and temperature|
 ^If IET = 1 (I5)^^ ^If IET = 1 (I5)^^
-|NEPS| Number of strain ​level definition|+|NEPS| Number of strain ​levels|
 __Remark:__ Some values are already defined in [[laws:​meta#​ Integer parameters|Integer parameters]],​ pay attention to give the same value. Values as NTPCA, NPA, NVM, NTEMP are defined a first time automatically in  LAWPRE. If you want to change these values, change also in the FORTRAN source file called LMETA.F. __Remark:__ Some values are already defined in [[laws:​meta#​ Integer parameters|Integer parameters]],​ pay attention to give the same value. Values as NTPCA, NPA, NVM, NTEMP are defined a first time automatically in  LAWPRE. If you want to change these values, change also in the FORTRAN source file called LMETA.F.
  
Line 31: Line 31:
 ^Title (A5)^^ ^Title (A5)^^
 |Title|TPCAR written in columns 1 to 5| |Title|TPCAR written in columns 1 to 5|
-^Parameters (7G10.0)^^ ​+^Parameters (7G10.0/​7G10.0/​6G10.0) - Only NTPCA parameters are read^^ 
 |$A_3$ or $A_{cm}$|$A_3$:​ equilibrium temperature for the beginning of the ferrite ​ transformation\\ $A_{cm}$:​equilibrium temperature for the beginning of the cementite ​ transformation| |$A_3$ or $A_{cm}$|$A_3$:​ equilibrium temperature for the beginning of the ferrite ​ transformation\\ $A_{cm}$:​equilibrium temperature for the beginning of the cementite ​ transformation|
 |$A_1$|equilibrium temperature for the eutectoïd transformation| |$A_1$|equilibrium temperature for the eutectoïd transformation|
Line 40: Line 40:
 |AM|Coefficient of the Marburger law for the martensite transformation| |AM|Coefficient of the Marburger law for the martensite transformation|
 |FINCU|If no transformation has occurred when the temperature $B_s$ is reached, the SCHEIL'​s sum is multiplied by FINCU (generally FINCU = 0.0)| |FINCU|If no transformation has occurred when the temperature $B_s$ is reached, the SCHEIL'​s sum is multiplied by FINCU (generally FINCU = 0.0)|
- All the characteristic temperatures are defined on the figure below:+|CP_e| Values defining the shift in the diagram TTT : $D = C\ \sigma_{equivalent}$ for the ferrite and the pearlite | 
 +|CB_a| Values defining the shift in the diagram TTT : $D = C\ \sigma_{equivalent}$ for the bainite | 
 +|A| Values that gives the variation of M_s | 
 +|B| $\Delta M_s = A \sigma_{moi} + B \sigma_{equivalent}$ | 
 +|EXPR| $\gamma \rightarrow $ Pr | 
 +|EXPE| $\gamma \rightarrow $ Pe : Dilatation due to the austenite transformation | 
 +|EXBA| $\gamma \rightarrow $ Ba (the reference volume is the austenite at 0E C) | 
 +|EXMA| $\gamma \rightarrow $ MA | 
 +|K4=K3| Coefficient in the plasticity transformation formulae : ferrite, cementite, pearlite | 
 +|K5| Coefficient in the plasticity transformation formulae : bainite | 
 +|K6| Coefficient in the plasticity transformation formulae : martensite | 
 +|TLIQUID| Temperature where the steel is considered to be fully liquid. Beyond this temperature,​ the preprocessor will automatically set the thermal dilatation coefficient to null values.\\ \textbf{Important : put an initial value even if you don't model liquid state}| 
 +All the characteristic temperatures are defined on the figure below:
 {{  :​laws:​meta.png?​500 ​ |}} {{  :​laws:​meta.png?​500 ​ |}}
 +
 +__Remark__ : Some additional parameters can occur depending on the steel and its plasticity transformation formula or the modification of the formula of the shift ($D=C\sigma$). If you want to change, you must adopt: ​
 +  - NTPCA (section 2);
 +  - Subroutine METLAW that read and write with comments the parameters of section 3;
 +  - Subroutine ARMEA that read the great vector PAMET where are stored the parameters of section 3 and where the formulae of $D$ and $\varepsilon^{pt}$ are implemented.
 ==== 3bis. If IET = 1 ==== ==== 3bis. If IET = 1 ====
 ^Title (A5)^^ ^Title (A5)^^
 |TITLE|STLVL in the first 5 columns| |TITLE|STLVL in the first 5 columns|
-^Line 1 - repeated ​NEPS times (G10.0)^^ +^Repeated ​NEPS times (G10.0)^^ 
-|EPS|Strain level|+|EPS|Values of the NEPS strain levels (variable tangent modulus)|
 ====4. Parameters described by polynomials of temperature==== ====4. Parameters described by polynomials of temperature====
 ^Title (A5)^^ ^Title (A5)^^
Line 78: Line 95:
 One must write FI followed by a blank card.\\ :!: If input parameters (temperature dependent) are given as a table, all the tables must have the same length. Otherwise, it does not work properly. ​ One must write FI followed by a blank card.\\ :!: If input parameters (temperature dependent) are given as a table, all the tables must have the same length. Otherwise, it does not work properly. ​
  
-====5. Description of TTT diagram====+==== 5. Mechanical parameters (Only for laws coupled with mechanics) ==== 
 +  - Firstly you give five letters : '​A1^A2'​ and NTER where :  
 +    * A1 defines the mechanical parameter:​ 
 +      * YOUNG modulus: YO 
 +      * POISSON ratio: NU 
 +      * Thermal dilatation: AC or AP (AC for the $\alpha$ coefficient of classical type and AP for the $\alpha$ coefficient of partial type) 
 +      * Yield stress $\sigma_y$: SY 
 +      * Plastic slope: ET 
 +    * If IPOLY=0: 
 +      * Thermal conductivity:​ LA 
 +      * Mass density: RO 
 +      * Heat capacity: CA 
 +      * Vickers hardness: HV 
 +      * Latent heat of transformation:​ TR 
 +    * '​^'​ is a space; 
 +    * A2 defines the phase concerned;​ 
 +      * Austenite: AU (Except for A1=TR) 
 +      * Proeutectoïd:​ PR 
 +      * Pearlite: PE 
 +      * Bainite: BA 
 +      * Martensite: MA 
 +    * NTER as the number of temperature used to describe the evolution of the parameter.\\ 
 +  - Secondly, **ONLY IF** AC is chosen: \\ (A5,G10.0) 3 spaces and '​TO'​ or '​T0'​ \\ VALUE: Value of $T_0$ (usually $T_0$ is the room temperature so 20°C or 293K, be careful there is no default value for this parameter, so you should enter a value, otherwise the preprocessor will crash) 
 +  - Thirdly, you repeat NTER times:  
 +    * TEMPE:​ Temperature 
 +    * VALUE: Value of the parameter 
 + 
 +__Remarks :__ 
 +  - No defined tables are initialized to zero 
 +  - A1 = FI followed by a blank card indicates the end of section 5. 
 +  - For the table describing ALPHA, the first temperature __must be__ zero otherwise the integration of $\int_0^{T_{\alpha}} dT$ will not be correct. \\ 
 + 
 +__Remarks about the thermal coefficient $\alpha$:​__ 
 +  - The $\alpha_C$ coefficient of classical type is defined by : \[\alpha_C(T) = \frac{1}{L_0}\frac{L_{(T)}-L_0}{T-T_0}\] where $L_0=L(T_0)$.\\ The $\alpha_P$ coefficient of partial type is defined by : \[\alpha_P(T)=\frac{1}{L_{(T)}}\frac{dL}{dT}\] The user could give the classical type or the partial type $\alpha$ coefficient (with AC or AP).\\ 
 +  - If $\alpha$ is of classical type ($\alpha_C$) :  
 +    * The unity, chosen by the user, of $T_0$ has to be the same as the unity of the temperatures at which the $\alpha_C$ coefficient is given. 
 +    * The temperatures,​ at which the $\alpha_C$ coefficient is given, have to be given in increasing order. 
 +    * It is necessary to give at least 2 values of $\alpha_C$ at two temperatures. 
 +    * Each $\alpha_C$ coefficient has to verify the following relation : \[1+\alpha_C(T).(T-T_0)>​0\;​\text{ and not equal to 0}\] 
 +  - If the user gives the classical type $\alpha_C$ coefficient (AC), the pre-processor will calculate the partial type $\alpha_P$ coefficient. If the user gives the partial one, the pre-processor keeps these values. In the case of the calculus of the partial type $\alpha_P$ coefficient,​ the following relations are used (see the file ALPHAPARTIEL.F) for given couples ($T_i,​\alpha_{Ci}$) with $i=1,...,n$ : \[\alpha_{P1} = \frac{\alpha_{C1}+(T_1-T_0)\frac{\alpha_{C2}-\alpha_{C1}}{T_2-T_1}}{1+\alpha_{C1}(T_1-T_0)}\]\[\alpha_{Pn} = \frac{\alpha_{Cn}+(T_n-T_0)\frac{\alpha_{Cn}-\alpha_{Cn-1}}{T_n-T_{n-1}}}{1+\alpha_{Cn}(T_n-T_0)}\] and for $i$ such as $1<​i<​n$:​ \[\alpha_{Pi}=\frac{\alpha_{Ci}+\frac{1}{2}(T_i-T_0)\left(\frac{\alpha_{Ci}-\alpha_{Ci-1}}{T_i-T_{i-1}}+\frac{\alpha_{Ci+1}-\alpha_{Ci}}{T_{i+1}-T_i}\right)}{1+\alpha_{Ci}(T_i-T_0)}\] 
 +  - For more information about the $\alpha$ coefficient of classical and partial type, the reader could see the internal report N° M&​S/​2002-8 of the 5$^{th}$ December 2002 entitled "​Comparaison des coefficients de dilatation thermique classique et partiel"​. 
 +  - An example of what the user should give is:  
 + 
 +    AC AU    5 
 +        T0       0.0 
 +           ​0.0 ​  ​10.E-06 
 +         ​200.0 ​  ​12.E-06 
 +         ​400.0 ​  ​16.E-06 
 +         ​700.0 ​  ​25.E-06 
 +         ​900.0 ​  ​30.E-06 
 +    AC PE    2 
 +        T0       0.0 
 +           ​0.0 ​  ​10.E-06 
 +         ​900.0 ​  ​30.E-06 
 +    AP MA    5 
 +           ​0.0 ​  ​30.E-06 
 +         ​200.0 ​  ​25.E-06 
 +         ​400.0 ​  ​16.E-06 
 +         ​700.0 ​  ​12.E-06 
 +         ​900.0 ​  ​10.E-06 ​     
 + 
 +====6. Description of TTT diagram====
 The three phases : Proeutectoïd (PROEU). Pearlite (PERLI) and bainite (BAINI) have to be described successively by the sections detailed hereafter. The order PROEU, then PERLI, then BAINI must be respected. The three phases : Proeutectoïd (PROEU). Pearlite (PERLI) and bainite (BAINI) have to be described successively by the sections detailed hereafter. The order PROEU, then PERLI, then BAINI must be respected.
  
Line 103: Line 181:
 |PSUP|Upper percentage| |PSUP|Upper percentage|
 |NTR|Number of temperatures used to described the curve of the transformation of PINF and PSUP percent| |NTR|Number of temperatures used to described the curve of the transformation of PINF and PSUP percent|
-N.B.These data are used to complete n and b coefficients of the Johnson-Mehl-Avrami law\\ 
-Remark : The NTR number must be limited by the data NT1, NT2 or NT3 given in section [[appendices:​a12#​2. General data| General data]] ​ for each phase (PROEU, PEARLI or BAINI)\\ 
 ^Repeat NTR times (3G10.0)^^ ^Repeat NTR times (3G10.0)^^
 |TEMPE|Temperature| |TEMPE|Temperature|
 |TINF|:::| |TINF|:::|
 |TSUP|:::| |TSUP|:::|
-Remark2 ​: Do not leave an empty card at the end of the *.met. Otherwise the Prepro will expect for another material.+N.B.These data are used to complete n and b coefficients of the Johnson-Mehl-Avrami law\\ 
 +__Remark 1__: The NTR number must be limited by the data NT1, NT2 or NT3 given in section [[appendices:​a12#​2. General data| General data]] ​ for each phase (PROEU, PEARLI or BAINI)\\ 
 +__Remark 2__: Do not leave an empty card at the end of the *.met. Otherwise the Prepro will expect for another material.
  
appendices/a12.1573746607.txt.gz · Last modified: 2020/08/25 15:33 (external edit)